35. Point of Adoption

The Point of Adoption (PoA) model is a distillation of three implementation phases: readiness, capability, and maturity. As a term, PoA identifies the juncture(s) where organizational readiness transforms into organizational capability/maturity. It also identifies the juncture(s) where technological invention and a procedural innovation transforms into organizational - as well as market wide - diffusion:


Point of Adoption model v1.1 (full size, current version)

As explored in Figure 1 above, transformative BIM adoption starts at the Point of Adoption (PoA) when an organization, after a period of planning and preparation (readiness), successfully adopts object-based modelling tools and workflows. The PoA[1] thus marks the initial capability jump from no BIM abilities (pre-BIM status) to minimum BIM capability (Stage 1). As the adopter interacts with other adopters, a second capability jump (Stage 2) marks the organization’s ability to successfully engage in model-based collaboration. Also, as the organisation starts to engage with multiple stakeholders across the supply chain, a third capability jump (Stage 3) is necessary to benefit from integrated, network-based tools, processes and protocols (refer back to BIM Stages).

Each of these capability jumps is preceded with considerable investment in human and physical resources, and each stage signals new organizational abilities and deliverables not available before the jump. However, the deliverables of different organizations at the same stage may vary in quality, repeatability and predictability (refer to BIM Maturity Index). This variance in performance excellence occurs as organizations climb their respective BIM maturity curve, experience their internal BIM diffusion, and gradually improve their performance over time[2].

The multiple maturity curves depicted in Figure 1 reflect the heterogeneous nature of BIM adoption even within the same organization (e.g. sample Organization X) has a compiled rating of 1c, 2b and 3a). This is due to the phased nature of BIM with each revolutionary stage requiring its own readiness ramp, capability jump, maturity climb, and point of adoption. This is also due to varied abilities across organizational sub-units and project teams: while organizational unit A1 (within Organization A) may have elevated model-based collaboration capabilities, unit A2 may have basic modelling capabilities, and unit A3 may still be preparing to implement BIM software tools. This variance in ability necessitates a compiled rating for organization A as it simultaneously prepares for an innovative solution, implements a system/process, and continually improves its performance.

Note: the Point of Adoption model is also discussed  (along with the UK BIM Maturity model) in Episode 22 on BIM ThinkSpace.

Update (May, 2016): below is a short video explaining the above on the Framework's YouTube channel:


[1] The Point of Adoption (PoA) is not to be confused with the critical mass ‘inflection point’ on the S-curve (E. M. Rogers, 1995) (Everett M Rogers, Medina, Rivera, & Wiley, 2005); or with the ‘tipping pint’, the critical threshold introduced by Gladwell (2001).

[2] The X-axis in Figure 1 represents time relative to each PoA, not as an absolute scale. That is, this version of the chart does not represent a snapshot view of compiled capability/maturity at a specific point in (absolute) time.

34. Diffusion Areas

This conceptual model (Figure 1) clarifies how BIM Field types (technology, process and policy) interact with BIM Capability Stages (modelling, collaboration and integration) to generate nine areas for targeted BIM diffusion analysis and BIM diffusion planning:


Figure 1. Diffusion Areas model v1.0 (full size, current version)

The nine diffusion areas, explored in the below table, can be assessed independently or collectively. For example, the diffusion of BIM software tools within a population (modelling technologies [1TE]) can be assessed separately, and using different assessment methods, than establishing the proliferation of integrated project delivery contracts (integration policies [3PO]). Also, the diffusion of multidisciplinary BIM educational curricula (collaboration policies [2PO]) can be assessed separately, or in combination with, the proliferation of collaborative BIM roles and responsibilities (collaboration processes [2PR]).

  Diffusion Areas Matrix

Table 1. Diffusion Areas matrix (with sample granular metrics within each diffusion area)

The nine diffusion areas, their structured subdivisions and combinations, provide an opportunity for granular assessments of BIM diffusion within a population of adopters. Rather than being treated uniformly as a single set of data, or separated into disparate topics without an underlying conceptual structure, the Diffusion Areas’ model (Figure 1) allows the generation of targeted ratings for comparative market analysis - as exemplified in Figure 2:

Diffusion-Areas-Comparison-Chart-sampleFigure 2. Diffusion Areas Comparison sample chart v1.1 - updated April 24, 2016  (full size, current version)


Below is a short video explaining the above, as available on the Framework's YouTube channel:



Please note that the above model, table and chart are part of five macro adoption models collated within "Succar, B., & Kassem, M. (2015). Macro-BIM adoption: Conceptual structures. Automation in Construction57, 64-79". Download full paper from here:

8. Project Lifecycle Phases

BIM - Project LifeCycle Phases

Fig.1 Project Lifecycle Phases, and sub-phases 




Fig.2 Effect of BIM on Project Lifecycle Phases

Construction projects pass through three major Project Lifecycle Phases (PLP)s: Design [D], Construction [C] and Operations [O]. These phases are also subdivided into sub-phases which are in turn further subdivided into activities, sub-activities and tasks. This conceptual model (Fig. 2) depicts the effects of BIM on project lifecycle phases over the three BIM Stages.

3. BIM Stages


The BIM Framework introduces the stages separating Pre-BIM (the status before BIM) from viDCO (virtually integrated Design, Construction and Operation) - the ultimate vision from implementing BIM. These revolutionary stages, and the evolutionary steps separating them, are intended to both clarify and measure BIM adoption.

Note 1: this model depicts BIM Capability Stages at Maturity Level C...Also, starting in Paper A4, the term viDCO replaces the term IPD as used earlier in Papers A2 and A3

Note 2: The ‘BIM Stages’ model was first introduced by the author through BIM ThinkSpace (Episode 8 – Feb 18, 2008) and then published in Paper A2 as ‘BIM Maturity Stages’. As of Paper A3, the BIM capability/maturity concept embedded in the original model was split into two metrics/models: BIM Capability Stages and BIM Maturity Levels.

Update (July, 2015) - below is a short video explaining the above on the Framework's YouTube channel: