Model

42. BIMe Initiative Knowledge Structure

image from www.bimframework.infoBIMe Initiative Knowledge Structure (full size image)

This model represents the Knowledge Structure which the BIMe Initiative (BIMexcellence.org) is reliant upon to deliver interconnected software applications, guides, conceptual structures and learning materials. The Knowledge Structure is composed of five complementary Knowledge Sets:

  • KS1 Knowledge Foundations represents all the research supporting the BIMe Initiative;
  • KS2 Knowledge Blocks represents the modular language developed/used by the BIMe Initiative to define inputs, processes and outputs;
  • KS3 Knowledge Tools represents all the digital and analogue tools/templates used to conduct knowledge acquisition, engineering and sharing;
  • KS4 Knowledge Workflows represents all repeatable procedures for knowledge acquisition and service delivery; and
  • KS5 Knowledge Views identifies the varied ways the BIMe Initiative activities and deliverables can be represented and communicated.

The Knowledge Sets and their subsets form the bases for all BIMe Initiative Projects (refer to 103in); organise the activities of the BIMe Initiative Network (refer to 104in); and allow the development of an expansive Knowledge Object Library.


37. Model Uses - Conceptual Structures

Model Uses are the “expected or intended project deliverables expected from generating, collaborating-on and linking 3D models to external databases” (BIM Dictionary, 2015). Each Model Use represents a set of defined requirements, specialised activities and specific project outcomes, grouped together under a single heading. 

Model Uses [1] rely on the conceptual structures of the BIM Framework, namely: the Tri-Axial Framework, Competency Framework, and BIM Ontology - Figure 1:

   Model-Uses-Conceptual-StructuresFigure 1. Conceptual Structure underlying Model Uses (Full Size v0.3 or Older Version )

As highlighted in Figure 1, Model Uses are supported by three conceptual structures [2] - Updated May 2, 2016:

  • Within the Tri-Axial Framework, Model Uses are deliverables [Tri-axial Framework>Fields>Field Components>Deliverables (Model-based Deliverables, identified through the Information Management Lens)] (refer to Papers A2 and A5);
  • According to the BIM Ontology, a Model Use is a knowledge block [BIM Ontology>Knowledge Objects>Knowledge Sets>Knowledge Blocks> Information Uses > Model Uses] (refer to Thesis, Appendix A); and
  • Within the Competency Framework, Model Uses are competency topics [Competency Framework> Competency Hierarchy>Competency Tiers (Domain)>Competency Set (Operation)>Competency Topics (9 Topics)] (Refer to Paper A6).
 

 
[1] Model Uses are discussed in detail  within Episode 24 on BIM ThinkSpace.

[2] The number of structures supporting a BIM Framework part is proportional to its conceptual strength.

 


27. Conceptual Hierarchy

image from www.bimframework.infoConceptual Hierarchy Current Version, full-size image (older version v1.0)

The BIM framework is composed of several interrelated conceptual constructs: models, taxonomies, classifications and dictionaries. A common conceptual ontology connects all conceptual constructs and makes explicit the relationship between them. Below is a generic description of the depicted conceptual parts:

Frameworks show “the gestalt, the structure, the anatomy or the morphology of a field of knowledge or the links between seemingly disparate fields or sub-disciplines” (Reisman, 1994, p. 92).

Models (conceptual models) are simplified representations and abstractions of the “enormous richness of this world” (Ritter, 2010, p. 360) (Lave & March, 1993).

Taxonomies are an efficient and effective way to organize and consolidate knowledge (Reisman, 2005) (Hedden, 2010). A well-structured taxonomy allows “the meaningful clustering of experience” (Kwasnik, 1999, p. 24).

Classifications are the “meaningful clustering of experience” (Kwasnik, 1999, p. 24) and “lies at the heart of every scientific field” (Lohse, Biolsi, Walker, & Rueter, 1994, p. 36). Classification is also a heuristic tool useful during the formative stages of discovery, analysis and theorizing (Davies, 1989).

Dictionaries constitute a a web of meaning (Cristea, 2004) connecting terms to each other and to other knowledge bases.